Search results for "Energy loss"

showing 10 items of 59 documents

Formation of dislocations and hardening of LiF under high-dose irradiation with 5–21 MeV 12C ions

2017

R. Zabels, I. Manika, J. Maniks, and R.Grants acknowledge the national project IMIS2, and A. Dauletbekova, M. Baizhumanov, and M. Zdorovets the Ministry of Education and Science of the Republic of Kazakhstan for the financial support.

010302 applied physicsEnergy lossMaterials sciencePhysics::Instrumentation and DetectorsAtomic force microscopyAstrophysics::High Energy Astrophysical PhenomenaPhysics::Medical Physicsmacromolecular substances02 engineering and technologyGeneral ChemistryNanoindentation021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsIsotropic etchingElastic collisionIonPhysics::Plasma Physics0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Hardening (metallurgy)General Materials ScienceIrradiationAtomic physics0210 nano-technologyApplied Physics A
researchProduct

New fine structures resolved at the ELNES Ti-L2,3 edge spectra of anatase and rutile: comparison between experiment and calculation.

2010

Abstract Anatase and rutile Ti- L 2,3 edge spectra were measured in electron energy loss spectroscopy (EELS) using a transmission electron microscope (TEM) coupled to a CEOS Cs-probe corrector, an omega-type monochromator and an in-column omega-type energy filter fully corrected for 2nd order aberrations. Thanks to the high energy resolution, high electron probe current and high stability achieved under this instrumental configuration, new fine structures, never reported before, were resolved at the L 3 band of both rutile and anatase. The data suggest that new peaks also exist in the L 2 e g band. The experimental spectra are compared with multichannel multiple scattering (MMS) calculation…

010302 applied physicsLigand field theoryAnataseMaterials scienceScatteringElectron energy loss spectroscopyAnalytical chemistry02 engineering and technology[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsAtomic and Molecular Physics and OpticsSpectral lineElectronic Optical and Magnetic Materialslaw.inventionG bandlaw[ CHIM.MATE ] Chemical Sciences/Material chemistry0103 physical sciences0210 nano-technologyElectronic band structureInstrumentationComputingMilieux_MISCELLANEOUSMonochromator
researchProduct

Structural characterization of TiO2/TiN O (δ-doping) heterostructures on (1 1 0)TiO2 substrates

2003

Abstract TiO2/TiNxOy δ-doping structures were grown on the top of (1 1 0)TiO2 rutile substrates by low pressure metal-organic vapor phase epitaxy (LP-MOVPE) technique at 750 °C. The samples were analyzed by high resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS) and X-ray diffraction techniques (rocking curves and φ-scans). The presence of satellites in the (1 1 0)TiO2 rocking curve revealed the epitaxial growth of 10 period δ-doping structures. The thickness of the TiO2 layers, 84 nm, was deduced from the satellites period. HRTEM observations showed around 1.5 nm thick δ-doping layers, where the presence of nitrogen was detected by EELS. The analy…

010302 applied physicsMaterials scienceElectron energy loss spectroscopyGeneral Physics and Astronomy02 engineering and technologySurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsEpitaxy01 natural sciencesElectron spectroscopySurfaces Coatings and FilmsCrystallographySurface coatingTransmission electron microscopy0103 physical sciencesX-ray crystallography[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Metalorganic vapour phase epitaxy0210 nano-technologyHigh-resolution transmission electron microscopyComputingMilieux_MISCELLANEOUS
researchProduct

Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC

2018

We report the measured transverse momentum ($p_{\rm T}$) spectra of primary charged particles from pp, p-Pb and Pb-Pb collisions at a center-of-mass energy $\sqrt{s_{\rm NN}} = 5.02$ TeV in the kinematic range of $0.15<p_{\rm T}<50$ GeV/$c$ and $|\eta|< 0.8$. A significant improvement of systematic uncertainties motivated the reanalysis of data in pp and Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV, as well as in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, which is also presented. Spectra from Pb-Pb collisions are presented in nine centrality intervals and are compared to a reference spectrum from pp collisions scaled by the number of binary nucleon-nucleon collisions. For cent…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]heavy ion: scatteringHadronmomentum [up]binaryMULTIPLICITY DEPENDENCEPartonheavy ion: scattering ; transverse momentum: momentum spectrum ; quantum chromodynamics: matter ; parton: energy loss ; momentum: high ; up: momentum ; pp: scattering ; nucleus ; charged particle ; suppression ; energy dependence ; impact parameter ; transport theory ; nucleon nucleon ; CERN LHC Coll ; kinematics ; binarymomentum spectrum [transverse momentum]hiukkasfysiikkaKAONnucl-ex01 natural sciences7. Clean energy2760 GeV-cms/nucleonHigh Energy Physics - Experimenttransverse momentum: momentum spectrumHeavy Ion Experiments; Heavy-ion collision; Nuclear and high energy physicsHigh Energy Physics - Experiment (hep-ex)quark gluon plasma Heavy Ion Experiments Heavy-ion collisionnucleon nucleonHeavy-ion collisionhigh [momentum]PIONscattering [p p]transport theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)impact parameterNuclear ExperimentNuclear ExperimentQCD matterparticle production and suppressionPhysicsPhysicsHADRONSheavy ion experiments heavy ion collision particle production and suppressionHeavy Ion Experiments; Heavy-ion collisionVDP::Kjerne- og elementærpartikkelfysikk: 431suppressionCENTRALITY DEPENDENCEcharged particleCharged particleMULTIPLICITY DEPENDENCE; CENTRALITY DEPENDENCE; HADRONS; SUPPRESSION; MODEL; KAON; PIONquark gluon plasma:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]:Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollVDP::Nuclear and elementary particle physics: 431kinematicsHeavy Ion ExperimentImpact parameterParticle Physics - ExperimentHeavy Ion Experiments Heavy-ion collision Nuclear and High Energy Physics.Nuclear and High Energy Physicsp p: scatteringnucleon nucleon: scatteringenergy loss [parton]FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencesenergy dependenceNuclear physicsPionHeavy Ion Experiments[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]scattering [heavy ion]0103 physical sciencesmatter [quantum chromodynamics]lcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530Nuclear Physics - Experiment5020 GeV-cms/nucleonup: momentum010306 general physicsp nucleus: scatteringquantum chromodynamics: matterta114010308 nuclear & particles physicshep-exnucleus:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Nuclear and high energy physicsheavy ion collisionMODEL* Automatic Keywords *13. Climate actionmomentum: highQuark–gluon plasmalcsh:QC770-798High Energy Physics::Experimentparton: energy lossEnergy (signal processing)experimental results
researchProduct

Structural and Chemical Characterization of Cerium Oxide Thin Layers Grown on Silicon Substrate

2015

In this study, we report transmission electron microscopy and electron energy loss spectroscopy study of cerium oxide thin layers deposited on silicon substrate. Transmission electron microscopy experiments have revealed the flat morphology of the deposited layers. In addition, studies of high resolution images have indicated the presence of mainly ceria crystallized nanoparticles. Energy electron loss spectroscopy measurements were also performed in scanning mode to study the evolution of the cerium valence. In addition to Ce4+ inside the layer, the presence of amorphous cerium silicate with valence +3 is pointed out at the vicinity of the substrate.

Cerium oxideCeriumMaterials scienceValence (chemistry)Thin layersSiliconchemistryChemical engineeringTransmission electron microscopyElectron energy loss spectroscopyInorganic chemistrychemistry.chemical_elementAmorphous solidMaterials Today: Proceedings
researchProduct

Growth and composition of nanostructured and nanoporous cerium oxide thin films on a graphite foil.

2015

The morphology and composition of CeOx films prepared by r.f. magnetron sputtering on a graphite foil have been investigated mainly by using microscopy methods. This study presents the formation of nanocrystalline layers with porous structure due to the modification of a carbon support and the formation of cerium carbide crystallites as a result of the deposition process. Chemical analyses of the layers with different thicknesses performed by energy dispersive X-ray spectroscopy, electron energy loss spectroscopy and X-ray photoelectron spectroscopy have pointed to the reduction of the cerium oxide layers. In the deposited layers, cerium was present in mixed Ce(3+) and Ce(4+) valence. Ce(3+…

Cerium oxideMaterials scienceElectron energy loss spectroscopyInorganic chemistrychemistry.chemical_elementSputter depositionCeriumChemical stateChemical engineeringchemistryX-ray photoelectron spectroscopyGeneral Materials ScienceGraphiteThin filmNanoscale
researchProduct

Detailed study of defects in thin fullerite films

2012

The structural investigations of fullerite films were performed using high-resolution electron microscopy, electron diffraction and electron energy loss spectroscopy and X-ray photoelectron spectroscopy. In particular defects such as dislocations, stacking faults and twins were studied in details. It was shown that fullerite films could be characterized by a face-centered cubic (f.c.c.) structure with lattice parameter a = 1.416 nm. They are distinguished for their rich polytypic structure that is caused by breaking of alteration of closely packed planes of (111) type. The quantitative method based on information theory using the “run-length encoding” algorithm was suggested to evaluate the…

CrystallographyLattice constantMaterials scienceX-ray photoelectron spectroscopyElectron diffractionlawElectron energy loss spectroscopyStackingGeneral Materials ScienceGeneral ChemistryElectron microscopeCondensed Matter Physicslaw.inventionCrystal Research and Technology
researchProduct

Polyamide-Based Fibers Containing Microwave-Exfoliated Graphite Nanoplatelets

2016

Exfoliated Graphite NanoPlatelets (GNP) have been obtained from Graphite Intercalation Compounds (GIC) subjected to thermal and microwave treatments. Accurate morphological and structural characterization of obtained GNP, performed to compare the degree of exfoliation, show that microwave-treated GNP, exhibit well-exfoliated structure, without any reduction in dimensions compared with the native GIC, differently to the thermal-treated ones. Microwave-treated GNP have been introduced in polyamide (PA) through melt-mixing to obtain nanocomposite that has been subjected to elongational flow, with the aim to improve the nanofiller dispersion and induce GNP orientation along the fiber direction.…

Electron energy loss spectroscopy (EELS); Fibers; Nanoparticles; Polyamides; Transmission Electron Microscopy; Chemical Engineering (all); Organic Chemistry; Polymers and PlasticsMaterials sciencePolymers and PlasticsGeneral Chemical EngineeringIntercalation (chemistry)NanoparticlePolyamides02 engineering and technologyElectron energy loss spectroscopy (EELS)010402 general chemistry01 natural sciencesNanoparticlePhase (matter)Chemical Engineering (all)GraphiteFiberFiberComposite materialSettore CHIM/02 - Chimica FisicaNanocompositeOrganic Chemistry021001 nanoscience & nanotechnologyExfoliation joint0104 chemical sciencesElectron energy loss spectroscopy (EELS) Fibers Nanoparticles Polyamides Transmission Electron MicroscopyFibersSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiPolyamidePolyamideNanoparticlesTransmission Electron Microscopy0210 nano-technology
researchProduct

Electron-spectroscopic investigations on ternary HFS: CeT2X2

1997

Investigations of the electronic properties were carried out for ternary Ce-based heavy fermion systems. The well-ordered surfaces of HFS were prepared by MBE on W (110) with subsequent annealing. The layers are characterised by MEED, LEED, AES and XPS. For the electron-spectroscopic investigations, ARUPS and SPEELS were used. In the photoemission spectra, dispersion effects could be detected. By means of SPEELS, the dipole-forbidden Ce f-f transitions could be observed. The comparison of the energy loss spectra above and below the characteristic temperature T∗ reveals differences in the energy losses as well as in the asymmetries.

Energy lossMaterials scienceAnnealing (metallurgy)Analytical chemistryAngle-resolved photoemission spectroscopyElectronCondensed Matter PhysicsSpectral lineElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceX-ray photoelectron spectroscopyHeavy fermionElectrical and Electronic EngineeringAtomic physicsTernary operationPhysica B: Condensed Matter
researchProduct

Multi-objective optimized management of electrical energy storage systems in an islanded network with renewable energy sources under different design…

2014

The subject addressed in this paper is the definition of some strategies for the design and the optimaized management of EES (Electrical Energy Storage) systems, for an existing islanded distribution network supplying the Island of Pantelleria (Italy) in the Mediterranean Sea. In the paper the authors have drawn interesting conclusions through the application of an efficient MO (multi-objective) optimization algorithm, the NSGA-II, minimizing the energy losses in the grid, the total electricity generation cost and the greenhouse gas emissions. The results obtained for different installation scenarios of the EES are presented and discussed, putting into evidence the technical, environmental …

EngineeringGHG (greenhouse gas)Industrial and Manufacturing EngineeringEnergy lossesDistribution systemElectric power systemIslanded systemElectrical and Electronic EngineeringCivil and Structural Engineeringbusiness.industryMechanical EngineeringControl engineeringBuilding and ConstructionEnergy losseGridPollutionReliability engineeringElectrical energy storageRenewable energySettore ING-IND/33 - Sistemi Elettrici Per L'EnergiaGeneral EnergyElectricity generationGreenhouse gasIslanded system;GHG (greenhouse gas);Energy losses;Electric energy storagebusinessElectric energy storageEnergy (signal processing)
researchProduct